电设过初赛了好开森呐~

n+e posted @ 2016年11月14日 18:59 in 日常 , 3400 阅读

光棍节一个人过 男生节一个人过 qaq 微积分考的再高又有卵用?

微积分

构造之美

虽然这玩意儿跟考试没啥关系,但我觉得蛮有趣的。

From. 习题课_20161030

Prob. 设$\exists f^{\prime\prime}(x),\ f(1)=6,\ f^\prime (1)=0,\ \forall x\ge 1,\ x^2f^{\prime\prime}(x)-3xf^\prime (x)-5f(x)\ge 0.$

证明:$\forall x\ge 1,\ f(x)\ge x^5+\frac{5}{x}$

考虑函数 $$g(x)=\frac{f(x)}{x^5}-(1+\frac{5}{x^6})$$ $$g^\prime(x)=\frac{x^2f^\prime(x)-5xf(x)+30}{x^7}$$

考察分子$$h(x)=x^2f^\prime(x)-5xf(x)+30$$

$$h^\prime (x)=\ x^2f^{\prime\prime}(x)-3xf^\prime (x)-5f(x)\ge 0$$

$$\therefore h(x)\ge h(1)>0 \Rightarrow g^\prime(x)>0$$

$$\therefore g(x)\ge g(1)=0$$

 

From. 练习题_20161106_Taylor的应用

$f(x)\in C[a,b],\ f(x)\in D^2(a,b),\ $证明$\exists \xi\in (a,b),\ s.t. $ $$\frac{\frac{f(x)-f(a)}{x-a}-\frac{f(b)-f(a)}{b-a}}{x-b}=\frac{1}{2}f^{\prime\prime}(\xi)$$

构造函数$$F(t)=\begin{vmatrix}f(t)&1&t&t^2\\f(x)&1&x&x^2\\f(a)&1&a&a^2\\f(b)&1&b&b^2\end{vmatrix}$$

$$\therefore F(x)=F(a)=F(b)=0\wedge F^{\prime\prime}(t)=\begin{vmatrix}f^{\prime\prime}(t)&0&0&2\\f(x)&1&x&x^2\\f(a)&1&a&a^2\\f(b)&1&b&b^2\end{vmatrix}$$

$$\therefore F(x)=F(a)=F(b)=0\Rightarrow F^\prime(\xi_1)=F^\prime(\xi_2)=0\Rightarrow F^{\prime\prime}(\xi)=0$$

将$F^{\prime\prime}(\xi)=0$展开即可得到答案。

听说有人期中考最后一题没做出来?

题目:$f(0)=0,\ f(1)=1,\ f^\prime (x)>0,\ $

证明 $\forall n\in \mathbb{N}^+,\ \exists \xi_{1..n}\in (0,1),\ \xi_i\neq \xi_j,\ s.t. \sum_{i=1}^n \frac{1}{f^\prime(\xi_i)}=n$

一个很自然的想法是,考虑区间 $(0,\frac{1}{n}),\ (\frac{1}{n},\frac{2}{n}),\cdots ,\ (\frac{n-1}{n},1)$,在每个区间上用一次中值定理,则有

$$f^\prime(\xi_k)=\frac{f(\frac{k}{n})-f(\frac{k-1}{n})}{\frac{k}{n}-\frac{k-1}{n}}=n(f(\frac{k}{n})-f(\frac{k-1}{n}))$$

求和即有 $\sum_{i=1}^n f^\prime(\xi_i)=n(f(1)-f(0))=n$

但是,答案里面要证导数的倒数和为0,怎么办呢?考虑反函数就好了。就酱。

听说某个智障用积分来做夹逼的题目?

错在哪里呢?夹逼得出来的答案 1 肯定没问题。

$$\lim_{n\to \infty}n\sum_{i=1}^n \frac{1}{n^2+i\pi}=1$$

然而变个形式,就是求 $$\sum_{i=1}^n \frac{1}{n+\frac{i}{n}\pi}$$

当 $n\to \infty$ 的时候,$\frac{i}{n}$ 取遍 $[0,1]$,于是把求和换成积分变成

$$\lim_{n\to\infty}\int_0^1 \frac{1}{n+x\pi}\, dx$$

就是$$\lim_{n\to\infty} \left.\frac{\ln (n+x\pi)}{\pi}\right|_{x=1}-\left.\frac{\ln (n+x\pi)}{\pi}\right|_{x=0}$$

然而 $$\lim_{n\to\infty} \frac{1}{\pi}\ln\frac{n+\pi}{n}=0$$

$\therefore 1=0\ ???$ hhh 真的了解 dx 吗

程设

为了公众号吸粉学委也是不择手段了…

大家刚考完C语言,然后这里简单讲评一下AB卷。

清华大学《计算机语言与程序设计》2016年秋季学期 期中测试 (A卷)

A1、单词替换(30分)

假设一个英文语句sentence,该语句中的单词是以空格为间隔的。然后有两个单词word1和word2,请将英文句子sentence中的所有单词word1用word2进行替换。

如,输入的语句为”I love red and round apples”,输入的单词分别为”round”和”sweet”,则替换后的语句为”I love red and sweet apples”。

 

可能有的人会把这种题写复杂了吧……这种题目不要在原串上进行操作,重新开一个串来储存结果,会好写很多。

sublime并不支持中文所以我就懒得打了。

#include <cstdio>
#include <cstring>
bool check(char *s, char *w)
{//判断两个字符串是否相等,以w为标准
    for (; *w && *s; s++, w++)
        if (*s != *w)
            return 0;
    return 1;
}
int main(int argc, char const *argv[])
{
    char s[256] = "", w1[20] = "", w2[20] = "", ans[300] = "";
    printf("Please input the sentence: ");
    gets(s);
    printf("Please input two words: ");
    scanf("%s%s", w1, w2);
    int l1 = 0;
    for (; w1[l1]; l1++);
    printf("After replacement: ");
    for (int i = 0, j = 0; s[i]; i++)
        if (check(&s[i], &w1[0]))
        {//如果相等直接替换
            for (int k = 0; w2[k]; ans[j++] = w2[k++]);
            i += l1 - 1;
        }
        else ans[j++] = s[i]; 
    puts(ans);
    return 0;
}
/*
I love red and round apples
red sweet
*/

A2、矩阵处理(30分)

已知一个$M$行$N$列的整数矩阵$A$,请从这个原始矩阵中以$a_{i,j}$为右下角元素抽取一个$m\times n$的子矩阵$B$,要求$a_{i,j}$必须位于$A$中,如果抽取的子矩阵$B$的范围超出原始矩阵$A$的范围,则子矩阵$B$中的这些元素将赋值为$0$。最后请将子矩阵$B$顺时针旋转$90^\circ$,得到结果矩阵$C$。

如:原始矩阵$A$为$\begin{vmatrix}1&2&3\\4&5&6\\7&8&9\end{vmatrix}$,若输入的右下角元素为$a_{1,1}$,输入的$m$、$n$分别为$2$、$3$,则子矩阵$B$为$\begin{vmatrix}0&1&2\\0&4&5\end{vmatrix}$,旋转后的结果矩阵$C$为$\begin{vmatrix}0&0\\4&1\\5&2\end{vmatrix}$。

 

这题考察点在计算坐标上,然而只要多开几个变量,就可以完全避免掉计算问题。

可以使用%-3d来向左对齐。

#include <cstdio>
#include <cstring>
int main(int argc, char const *argv[])
{
	int a[10][15], b[20][20], c[20][20];
	for (int i = 0, cnt = 0; i < 10; ++i)
		for (int j = 0; j < 15; ++j)
			a[i][j] = ++cnt;
	for (int i, j, n, m;
		printf("Please input i,j and m,n:"),
		scanf("%d%d%d%d",&i,&j,&m,&n), n&&m; )
	{
		if (i >= 10 || j >= 15)
		{
			puts("Error! Can not extract submatrix.\n");
			continue;
		}
		memset(b, 0, sizeof b);
		memset(c, 0, sizeof c);
		for (int x = m-1, ax = i; ax >= 0 && x >= 0; x--, ax--)
			for (int y = n-1, ay = j; ay >= 0 && y >= 0; y--, ay--)
				b[x][y] = a[ax][ay]; 
		//其实ax、ay坐标是可以算出来的,但是 让电脑算好呢 还是 让人算好呢?
		for (int x = 0, cx = m-1; x < m; x++, cx--)
			for (int y = 0; y < n; y++)
				c[y][cx] = b[x][y];
		//其实cx坐标是可以算出来的,但是 让电脑算好呢 还是 让人算好呢?
		printf("The submatrix B (%d*%d)is:\n", m, n);
		for (int x = 0; x < m; x++, puts(""))
			for (int y = 0; y < n; y++)
				printf("%-4d ", b[x][y]);
		printf("The submatrix C (%d*%d)is:\n", n, m);
		for (int x = 0; x < n; x++)
			for (int y = 0; y < m; y++)
				printf("%-4d%c", c[x][y], " \n"[y == m-1]);
		puts("");
	}
	puts("Programe end.");
	return 0;
}

A3、字符串处理(25分)

请按照如下的要求对于字符串中的字符进行消除处理。

(1)每次都从字符串的首元素开始,对连续出现2次(含2次)以上的字符进行处理。

(2)处理的规则为:若连续出现的字符为偶数个,这些连续字符就消除;若连续出现的字符为奇数个,这些连续字符就保留一个。

(3)重复上述消除处理步骤,直到字符串中不再有连续出现的字符为止。

(4)假设原始字符串长度不超过256。

如:原始的字符串为“aaabbaaab”则处理的过程为

“aaabbaaab”→“abbaaab”→“aaaab”→“b”

 

考察for语句的使用和字符串操作。感觉只能靠代码说清楚了。我在里面加了一些c语言上的技巧。

#include <cstdio>
bool equal(const char *s, const char *t)
{//判断两个字符串是否相等
	for (int i = 0; s[i] || t[i]; i++)
		if (s[i] != t[i]) return 0;
	return 1;
}
bool check(char *s)
{//判断字符串s是否可以继续执行消除操作
	for (int i = 0, j; s[i]; i = j)
	{
		for (j = i; s[j] == s[i]; j++);
		//这一步结束以后,s[i~j-1]都是相同的字符
		if (j - i >= 2) //j-i就是相同字符的长度
			return 1;
	}
	return 0;
}
void work(char *s)
{
	char tmp[256] = "";
	for (int i = 0, j, k = 0; s[i]; i = j)
	{
		for (j = i; s[i] == s[j]; j++);
		if (j - i >= 2 && (j - i) & 1 || j - i < 2)
			tmp[k++] = s[i];
		for (int l = i; l < j; l++) //把s[i~j-1]清空
			s[l] = 0;
	}
	for (int i = 0; tmp[i]; i++)
		s[i] = tmp[i];
}
int main(int argc, char const *argv[])
{
	for (char str0[256] = "";
		printf("Please input the original string, \
enter 'quit' or 'exit' to end this program:"),
		scanf("%s",str0), 
		!equal(str0, "quit") && !equal(str0, "exit");
		puts(str0))
		for (printf("After processed: "); check(str0); work(str0));
	//你真的熟悉for吗hhh	
	puts("Program end");
	return 0;
}

A4、数字处理(15分)

有200个4位正整数,请按照如下的要求编写程序对于这些数字进行处理。

(1)分析每个4位正整数的高三位、低三位分别构成的数值对(假设不考虑低三位数值为000的情况),并计算出每对数的最大公约数; 

(2)求所有最大公约数的均值,并找出最大公约数距离该均值最远的所有4位正整数,并将结果输出。

请使用如下的200个正整数:

8478,9782,2622,7840,8933,5163,5057,5820,6929,3882,9808,3508,9704,6034,

5395,7560,7720,8015,6070,7841,7148,5608,2103,4871,9560,1797,7625,4738,

1041,3809,5717,4664,7905,3164,1063,6934,5681,8869,2943,5914,3255,7478,

6722,9625,1611,3063,8920,5996,5245,6640,6783,5192,6145,1377,2216,8342,

4821,3324,5304,4792,1906,1662,8362,5341,3833,5514,2346,7967,8384,5799,

7037,7123,8333,2531,6360,2193,6435,5743,9726,5645,3355,8388,2430,3685,

7188,5270,7860,2667,1246,3553,9999,2133,2043,4970,1435,5803,4799,1951,

5304,9705,3769,5425,3578,4919,1475,5297,4842,2437,8623,5473,2125,7298,

7866,2612,8684,6959,5710,8952,9076,7919,4042,6587,8590,5778,4524,1172,

9130,2827,8826,4059,9679,7734,4973,3532,7638,2205,4784,1960,6808,6469,

9336,5573,6725,8789,5083,2591,2199,2543,5550,3326,6734,5906,2138,1226,

6173,8631,6062,7628,2773,2458,8499,6279,5737,2756,9772,3447,5889,7231,

6084,2633,5578,3985,6605,2835,9270,9612,9334,3765,5545,3621,4189,9912,

3540,5708,5325,6662,5525,5483,6009,5635,6990,5251,6426,5050,2652,8899,

6349,6347,4835,2907

 

就是一个模拟。我看了好多遍,确定是最远距离。然后看着答案怪怪的。

#include <cstdio>
int gcd(int x, int y) 
{
	return !y ? x : gcd(y, x % y);
}
#define abs(x) (x>0?x:-(x))
int main(int argc, char const *argv[])
{
	int a[200]={
8478,9782,2622,7840,8933,5163,5057,5820,6929,3882,9808,3508,9704,6034,5395,7560,
7720,8015,6070,7841,7148,5608,2103,4871,9560,1797,7625,4738,1041,3809,5717,4664,
7905,3164,1063,6934,5681,8869,2943,5914,3255,7478,6722,9625,1611,3063,8920,5996,
5245,6640,6783,5192,6145,1377,2216,8342,4821,3324,5304,4792,1906,1662,8362,5341,
3833,5514,2346,7967,8384,5799,7037,7123,8333,2531,6360,2193,6435,5743,9726,5645,
3355,8388,2430,3685,7188,5270,7860,2667,1246,3553,9999,2133,2043,4970,1435,5803,
4799,1951,5304,9705,3769,5425,3578,4919,1475,5297,4842,2437,8623,5473,2125,7298,
7866,2612,8684,6959,5710,8952,9076,7919,4042,6587,8590,5778,4524,1172,9130,2827,
8826,4059,9679,7734,4973,3532,7638,2205,4784,1960,6808,6469,9336,5573,6725,8789,
5083,2591,2199,2543,5550,3326,6734,5906,2138,1226,6173,8631,6062,7628,2773,2458,
8499,6279,5737,2756,9772,3447,5889,7231,6084,2633,5578,3985,6605,2835,9270,9612,
9334,3765,5545,3621,4189,9912,3540,5708,5325,6662,5525,5483,6009,5635,6990,5251,
6426,5050,2652,8899,6349,6347,4835,2907}, b[200], sum = 0, cnt = 0;
	for (int i = 0; i < 200; sum += b[i++])
		b[i] = gcd(a[i] % 1000, a[i] / 10);
	float average = sum / 200., max = 0, c[200];
	printf("Average of gcd is: %.2f\n",average);
	for (int i = 0; i < 200; i++)
		if ((c[i] = abs(average - b[i])) > max)
			max = c[i];
	for (int i = 0; i < 200; i++)
		if (c[i] == max)
			cnt++;
	printf("The number of the furthest number is %d\n",cnt);
	printf("They are: ");
	for (int i = 0; i < 200; i++)
		if (c[i] == max)
		{
			printf("%d", a[i]);
			if (--cnt) putchar(',');
		}
	puts("");
	return 0;
}

清华大学《计算机语言与程序设计》2016年秋季学期 期中测试 (B卷)

B1、字符串处理(25分)

请按照如下的要求对于字符串中的字符进行消除处理。

(1)每次都从字符串的尾元素开始向前处理,对连续出现2次(含2次)以上的字符进行操作。

(2)操作的规则为:若连续出现的字符为奇数个,这些连续字符就消除;若连续出现的字符为偶数个,这些连续字符就保留一个。

(3)重复上述消除处理步骤,直到字符串中不再有连续出现的字符为止。

(4)假设原始字符串长度不超过256。

如:原始的字符串为“aaabbaaab”则处理的过程为“aaabbaaab”→“aaabbb”→“aaa”→“”

再如:原始的字符串为“aaabbaab”则处理的过程为“aaabbaab”→“aaabbab”→“aaabab”→“bab”

 

就是A卷的第三题把一些东西改一下。我为了方便把字符串先翻转,变成从前往后处理,最后再翻回来就好。

#include <cstdio>
void reverse(char*s)
{
	int len = 0;
	char tmp;
	for (; s[len + 1]; len++);
	for (int i = 0, j = len; i < j; i++, j--)
		tmp = s[i], s[i] = s[j], s[j] = tmp;
}
bool check(char *s)
{//判断字符串s是否可以继续执行消除操作
	for (int i = 0, j; s[i]; i = j)
	{
		for (j = i; s[j] == s[i]; j++);
		//这一步结束以后,s[i~j-1]都是相同的字符
		if (j - i >= 2) //j-i就是相同字符的长度
			return 1;
	}
	return 0;
}
void work(char *s)
{
	char tmp[256] = "", flag = 0;
	for (int i = 0, j, k = 0; s[i] && !flag; i = j)
	{
		for (j = i; s[i] == s[j]; j++);
		if (j - i >= 2 && (j - i) % 2 == 0 || j - i < 2)
			tmp[k++] = s[i];
		if (j - i >= 2)
			flag = 1;
		for (int l = i; l < j; l++) //把s[i~j-1]清空
			s[l] = 0;
		if (flag)
			for (; s[j]; j++)
				tmp[k++] = s[j], s[j] = 0;
	}
	for (int i = 0; tmp[i]; i++)
		s[i] = tmp[i];
}
int main(int argc, char const *argv[])
{
	for (char str0[256] = "", read[2];
		printf("Do you want to process the string? Tap '@' for exit."),
		scanf("%s",read), read[0] != '@';
		reverse(str0), puts(str0), puts(""))
		for (printf("Please input the original string: "),
		scanf("%s",str0), reverse(str0), 
		printf("After processed: "); check(str0); work(str0));
	//你真的熟悉for吗hhh	
	puts("Program end");
	return 0;
}

B2、矩阵处理(30分)

已知一个$M$行$N$列的整数矩阵$A$,请从这个原始矩阵中以$a_{i,j}$为左上角元素抽取一个$m\times n$的子矩阵$B$,要求$a_{i,j}$必须位于$A$中,如果抽取的子矩阵$B$的范围超出原始矩阵$A$的范围,则子矩阵$B$中的这些元素将赋值为$0$。最后请将子矩阵$B$逆时针旋转$90^\circ$,得到结果矩阵$C$。

如:原始矩阵$A$为$\begin{vmatrix}1&2&3\\4&5&6\\7&8&9\end{vmatrix}$,若输入的左上角元素为$a_{1,1}$,输入的$m$、$n$分别为$2$、$3$,则子矩阵$B$为$\begin{vmatrix}5&6&0\\8&9&0\end{vmatrix}$,旋转后的结果矩阵$C$为$\begin{vmatrix}0&0\\6&9\\5&8\end{vmatrix}$。

 

A卷第二题。我已经把不同的地方加粗标出来了。

#include <cstdio>
#include <cstring>
int main(int argc, char const *argv[])
{
	int a[10][15], b[20][20], c[20][20];
	for (int i = 0, cnt = 0; i < 10; ++i)
		for (int j = 0; j < 15; ++j)
			a[i][j] = ++cnt;
	for (int i, j, n, m;
		printf("Please input i,j and m,n:"),
		scanf("%d%d%d%d",&i,&j,&m,&n), n&&m; )
	{
		if (i >= 10 || j >= 15)
		{
			puts("Error! Can not extract submatrix.\n");
			continue;
		}
		memset(b, 0, sizeof b);
		memset(c, 0, sizeof c);
		for (int x = 0, ax = i; ax < 10 && x < m; x++, ax++)
			for (int y = 0, ay = j; ay < 15 && y < n; y++, ay++)
				b[x][y] = a[ax][ay];
		//其实ax、ay坐标是可以算出来的,但是 让电脑算好呢 还是 让人算好呢?
		for (int x = 0; x < m; x++)
			for (int y = 0, cy = n-1; y < n; y++, cy--)
				c[cy][x] = b[x][y];
		//其实cy坐标是可以算出来的,但是 让电脑算好呢 还是 让人算好呢?
		printf("The submatrix B (%d*%d)is:\n", m, n);
		for (int x = 0; x < m; x++, puts(""))
			for (int y = 0; y < n; y++)
				printf("%-3d ", b[x][y]);
		printf("The submatrix C (%d*%d)is:\n", n, m);
		for (int x = 0; x < n; x++)
			for (int y = 0; y < m; y++)
				printf("%-3d%c", c[x][y], " \n"[y == m-1]);
		puts("");
	}
	puts("Programe end.");
	return 0;
}

B3、单词倒序(30分)

假设一个英文语句sentence,该语句中的单词是以空格或逗号为间隔的。请将英文句子sentence中的所有单词进行局部倒序输出。

如,输入的语句为”I love red and sweet apples, you love bananas”,则单词内局部倒序后的语句为”I evol der dna teews selppa, uoy evol sananab”。

再如,输入的语句为” I love red and sweet and big apples, you love bananas.”,则单词内局部倒序后的语句为”I evol der dna teews dna gib selppa, uoy evol .sananab”。(我觉得句逗应该放后面因为它不算单词一部分...)

 

找分界点,有空格或者逗号就停下。

一个小技巧是在字符串后面加一个空格,处理起来会方便。

#include <cstdio>
void reverse(char *s, int l, int r)
{
	for (char tmp; l < r; l++, r--)
		tmp = s[l], s[l] = s[r], s[r] = tmp;
}
int main(int argc, char const *argv[])
{
	char s[256];
	printf("Please input the sentence: ");
	gets(s);
	for (int i = 0; s[i]; i++)
		if (s[i] && !s[i + 1])
			{
				s[i + 1] = ' ';
				break;
			}
	for (int i = 0, j; s[i]; i = j)
	{
		for (j = i; s[j] != ' ' && s[j] != ','; j++);
		for (reverse(s, i, j - 1); s[j] == ' ' || s[j] == ','; j++);
	}
	printf("After processed: %s\n",s);
	return 0;
}

B4、数字处理(15分)

有200个4位正整数,请按照如下的要求编写程序对于这些数字进行处理。

(1)分析每个4位正整数的高三位、低三位分别构成的数值对(假设不考虑低三位数值为000的情况),并计算出每对数的最大公约数; 

(2)求所有最大公约数的均值,并找出最大公约数距离该均值最近的所有4位正整数,并将结果输出。

请使用如下的200个正整数:

8478,9782,2622,7840,8933,5163,5057,5820,6929,3882,9808,3508,9704,6034,

5395,7560,7720,8015,6070,7841,7148,5608,2103,4871,9560,1797,7625,4738,

1041,3809,5717,4664,7905,3164,1063,6934,5681,8869,2943,5914,3255,7478,

6722,9625,1611,3063,8920,5996,5245,6640,6783,5192,6145,1377,2216,8342,

4821,3324,5304,4792,1906,1662,8362,5341,3833,5514,2346,7967,8384,5799,

7037,7123,8333,2531,6360,2193,6435,5743,9726,5645,3355,8388,2430,3685,

7188,5270,7860,2667,1246,3553,9999,2133,2043,4970,1435,5803,4799,1951,

5304,9705,3769,5425,3578,4919,1475,5297,4842,2437,8623,5473,2125,7298,

7866,2612,8684,6959,5710,8952,9076,7919,4042,6587,8590,5778,4524,1172,

9130,2827,8826,4059,9679,7734,4973,3532,7638,2205,4784,1960,6808,6469,

9336,5573,6725,8789,5083,2591,2199,2543,5550,3326,6734,5906,2138,1226,

6173,8631,6062,7628,2773,2458,8499,6279,5737,2756,9772,3447,5889,7231,

6084,2633,5578,3985,6605,2835,9270,9612,9334,3765,5545,3621,4189,9912,

3540,5708,5325,6662,5525,5483,6009,5635,6990,5251,6426,5050,2652,8899,

6349,6347,4835,2907

 

就是一个模拟。我看了好多遍,确定是最近距离。这才科学嘛。

#include <cstdio>
int gcd(int x, int y) 
{
	return !y ? x : gcd(y, x % y);
}
#define abs(x) (x>0?x:-(x))
int main(int argc, char const *argv[])
{
	int a[200]={
8478,9782,2622,7840,8933,5163,5057,5820,6929,3882,9808,3508,9704,6034,5395,7560,
7720,8015,6070,7841,7148,5608,2103,4871,9560,1797,7625,4738,1041,3809,5717,4664,
7905,3164,1063,6934,5681,8869,2943,5914,3255,7478,6722,9625,1611,3063,8920,5996,
5245,6640,6783,5192,6145,1377,2216,8342,4821,3324,5304,4792,1906,1662,8362,5341,
3833,5514,2346,7967,8384,5799,7037,7123,8333,2531,6360,2193,6435,5743,9726,5645,
3355,8388,2430,3685,7188,5270,7860,2667,1246,3553,9999,2133,2043,4970,1435,5803,
4799,1951,5304,9705,3769,5425,3578,4919,1475,5297,4842,2437,8623,5473,2125,7298,
7866,2612,8684,6959,5710,8952,9076,7919,4042,6587,8590,5778,4524,1172,9130,2827,
8826,4059,9679,7734,4973,3532,7638,2205,4784,1960,6808,6469,9336,5573,6725,8789,
5083,2591,2199,2543,5550,3326,6734,5906,2138,1226,6173,8631,6062,7628,2773,2458,
8499,6279,5737,2756,9772,3447,5889,7231,6084,2633,5578,3985,6605,2835,9270,9612,
9334,3765,5545,3621,4189,9912,3540,5708,5325,6662,5525,5483,6009,5635,6990,5251,
6426,5050,2652,8899,6349,6347,4835,2907}, b[200], sum = 0, cnt = 0;
	for (int i = 0; i < 200; sum += b[i++])
		b[i] = gcd(a[i] % 1000, a[i] / 10);
	float average = sum / 200., min = 10000, c[200];
	printf("Average of gcd is: %.2f\n",average);
	for (int i = 0; i < 200; i++)
		if ((c[i] = abs(average - b[i])) < min)
			min = c[i];
	for (int i = 0; i < 200; i++)
		if (c[i] == min)
			cnt++;
	printf("The number of the nearest number is %d\n",cnt);
	printf("They are: ");
	for (int i = 0; i < 200; i++)
		if (c[i] == min)
		{
			printf("%d", a[i]);
			if (--cnt) putchar(',');
		}
	puts("");
	return 0;
}

---By n+e
NoNoSS 说:
2017年1月02日 16:33

金牌爷竟然担心大学程序设计

Avatar_small
n+e 说:
2017年1月05日 22:51

@NoNoSS: 并没有啊。。。我只是给同学写一下,有些人是零基础

jnanabhumiap.in 说:
2024年1月23日 17:20

JNANABHUMI AP provides all the latest educational updates and many more. The main concept or our aim behind this website has been the will to provide resources with full information on each topic jnanabhumiap.in which can be accessed through the Internet. To ensure that every reader gets what is important and worthy about the topic they search and link to hear from us.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter